임베디드랜드

    (공통부품인 브레드보드와 전원, 부품배치와 회로도 보는 법에 대해서는 앞에서 미리 설명을 드렸습니다)

    아래의 "회로도 이해하기 (10)"에 회로도, 실체도, 부품리스트, 동작테스트 방법 및 주의사항이 나옵니다.
    이 구성은 모든 회로예제에서 마찬가지입니다. ^^

    ※ 처음 회로를 제작하시는 분은 "실체도"를 똑같이 제작하시기 바랍니다. 다음에 회로동작을 확인한 후
    자신의 생각대로 부품배치를 바꿔서 동작시켜 보십시요.

    ▶ 회로설명 : 555 IC의 2 번핀 상태를 주목해 봅시다. 스위치(S1)이 열려있으면 555 IC의 2 번핀은 R3를 통해 전원으로 연결되어 있으므로 'H' 상태입니다. 스위치(S1)을 닫으면 (여전히 전원에는 R3가 연결되어 있지만) S1을 통해 GND(0V)로 곧바로 연결되므로 'L' 상태로 바뀝니다. (저항을 통하지 않는 쪽이 영향을 크게 미칩니다. 이렇게 저항과 스위치로 'H'와 'L'을 변경하는 회로는 아주 많이 사용됩니다. ^^)

    ※ 만일 회로에서 R3를 없애서 2 번핀이 바로 전원에 연결되어 있다면??? → 스위치(S1)을 닫는순간 전원과 GND(0V)가 단락(short) 상태로 됩니다. 이런 경우는 전원인 전지가 커다란 전류때문에 뜨거워지고 내부가 파손(소손)됩니다. (회로가 단락(short)되는 것은 최악의 상황으로 무조건 피해야 합니다. -_-)

    555 IC의 사양에 의하면 2 번핀은 트리거(Trigger) 핀이며 'H' → 'L'로 상태가 바뀌는 순간 동작합니다. 우리 555 IC 회로의 구성은 "단안정 멀티바이브레이터" 이며, 2 번핀이 트리거될 때 주기(T)의 구형펄스가 딱 하나 발생합니다. 발생한 펄스는 3 번핀에 연결된 R2와 LED1에 의해 확인할 수 있습니다.

    ※ T (주기) = 1.1 × R1 × C1 (초)

    ▶ 추가실험 : R1과 C1의 값을 변경하고, 변화된 LED1의 주기를 계산값과 비교해 봅니다.

    원하는 시간에, 원하는 길이의 펄스를 딱 하나 발생시킬 수 있는 능력은 얼핏 생각하기 보다 훨씬 중요한 뜻을 가지고 있습니다. 하나가 맘대로 된다는 말은, 하나를 두번 되풀이 하여 (원하는) 둘을 만들 수 있다는 뜻입니다. 따라서 같은 논리를 여러번 되풀이 하면 결과적으로 내가 원하는 어떤 형태의 펄스열이라도 만들 수 있게 됩니다. 우리 인류는 이렇게 발생시킨 펄스열을 사용하는 능력을 개발하여 최근의 디지탈 통신(communication)과 같은 수 많은 일을 할 수 있게 되었습니다. ^^

    ※ 원하는 시간에 임의 형태의 펄스열을 주고받는 그 자체가 바로 통신(communication) 입니다. ^^

    어느덧 우리 강의도 마지막 회에 도달하였습니다. 강의 시작에서 말씀드렸듯이 본 강의의 목적은 전자회로의 초보자로 하여금 회로도를 이해하고 실제부품을 사용하여 전자회로를 제작할 수 있도록 안내하는 것입니다.

    회로도는 일종의 언어라고 말씀드렸습니다. ^^ 언어를 이해하려면 단어와 문법을 알아야 합니다. 회로도에서 부품의 심볼과 사용하는 용어는 단어에 해당하며 여러가지 약속과 규칙은 문법에 해당합니다.

    그런 이유로 강의에서 10 가지 기본부품과 관련된 심볼, 용어를 설명하였고 회로도에 관련된 약속을 설명하였으며 몇 가지의 실제회로를 제작하면서 동작을 실험해 보았습니다. 그렇다면 회로도의 약속을 제작자가 100% 준수하였다는 것을 어떻게 알 수 있겠습니까? 그 답은 제작된 회로를 동작시켜 확인해 보는 것입니다. 회로가 잘 동작한다는 것은 회로도가 충실히 재현되었다는 것을 의미하게 때문입니다. ^^

    우리 강의는 대학의 정규 커리큘럼이 아니므로 수강비도 없지만 기말시험도 없습니다. (시험이 꼭 나쁘지 만은 않습니다. 대학에서 시험이 없다면 우리가 강의에서 획득하는 지식의 양은 지금의 반의 반도 안될 것입니다) 그러나 부품을 구입하여 회로를 제작하고 동작시켜 보았으면 여러분은 이 강좌를 수료할 수 있는 자격을 스스로 획득한 것입니다.

    강좌를 수료하고 나니 느낌이 어떻습니까? 그동안 고생은 하였지만 분명히 뿌듯한 기분을 가질 수 있을 것입니다. 그렇습니다!!! 이제 우리는 전자회로를 만들 수 있습니다. ^^ 회로도를 보아도 예전처럼 기하적인 그림으로 보이지는 않을 것입니다. 여러분은 회로도를 특수한 의미를 가지고 있는 설계도이며 부품을 구해서 만들어 볼 수 있는 구체적인 안내서로 바라볼 수 있을 것입니다.

    이제는 다음 단계를 이야기 하겠습시다. 필자가 여러분에게 이런저런 좋은 말로 전자회로를 공부해 보시라는 이유는 센서와 인터페이스, 마이컴, 컴퓨터 기술을 적절하게 구사할 수 있으면 로봇(robot)과 같이 과학기술을 응용하는 전문분야의 연구에 입문(入門)할 수 있기 때문입니다.

    센서(sensor)의 원리를 이해하는 문제는 센서의 종류마다 다르지만 사용방법은 결국 전자회로로 귀착됩니다. 인터페이스는 아날로그부(센서, 파워부)와 디지탈부(컴퓨터부)를 연결해주는 부분으로 전자회로로 이루어 집니다. 마이컴도 동작은 (마이컴)프로그램에 달려 있지만 동작시키는 모든 준비는 전자회로의 영역을 벗어나지 못합니다. (마이컴도 결국은 하나의 IC에 불과하니까요...) 컴퓨터도 프로그램을 빼고 생각하면 그 자체로 커다란 전자회로 뭉치일 뿐입니다. 인터넷을 위시한 통신도 결국은 마찬가지 입니다.

    자 이제 전자회로를 어느정도 이해할 수 있으니 우리의 목표인 로봇(robot)이나 코일 건(coil gun), 과학실험장치와 같은 응용기기의 개발과 제작에 성큼 한발 다가섰습니다. 다음 목표는 현대 전자부품의 꽃인 마이컴(micro computer)을 이해하고 사용하는 것입니다.

    지금의 우리시대는 온통 마이컴과 컴퓨터로 대표되는 디지탈(digital) 왕국으로 변해버렸습니다. 심지어 전자회로도 과거의 영화를 멀리하고 마이컴의 주변으로 활동범위를 축소, 제한하고 있습니다. 그러므로 지금 단계에서 전자회로의 공부에 깊이 빠져들 필요는 없습니다. "모든 길은 로마로 통한다"라는 말은 현대에서 "모든 회로는 마이컴으로 통한다"로 바꾸어야 할 정도가 되었습니다.

    지금에 보면 전기/전자/컴퓨터 기술자와 연구자는 마이컴 이해여부에 따라서 두 집단으로 나뉘어진다고 말해도 과언이 아닙니다. 그러나 마이컴은 책 한두권 또는 강좌 한 두개를 섭렵한다고 해서 쉽게 이해되는 대상은 아닙니다. 마이컴 기술은 전자회로의 지식과 프로그래밍의 이해를 배경으로 하여 설명됩니다. 우리의 주변상황은 프로그램을 배우기는 상대적으로 용이하나 전자회로는 배울 곳이 거의 없습니다. (그 이유는 전자회로가 배울만한 가치가 없어서가 아니라 전자회로를 알고 활용하는 사람이 적어 가르치는 곳이 드물기 때문입니다)

    그러나 마이컴을 내장된 프로그램에 따라 동작이 정해지는 IC로 생각한다면 사용하는 방법은 어렵지 않습니다. 그냥 일반 로직 IC와 같이 사용하면 되니까요... ^^ 마이컴이 배우기 어렵다는 말의 의미는 수 많은 종류의 마이컴마다 서로다른 프로그램 작성법 때문입니다. (마이컴은 종류마다 하드웨어(hardware)가 다르게 설계되므로, 하드웨어와 밀접한 관계를 맺고있는 기계어 명령도 종류마다 다릅니다) 또 마이컴에 사용되는 프로그램은 일반 개인용 PC에서 작성되고 기계어 코드(machine code)가 생성되지만, 개발된 프로그램의 동작을 확인해 보려면 마이컴에 옮겨담는 과정을 거쳐, 마이컴이 동작할 수 있는 회로안에서 작동시키고 시험하는 과정을 반복해야 합니다. 어떤 프로그램도 완전하게 작동하려면 많은 버그(bug)를 잡아내는 수정과정이 필요하므로 설명한 프로그램 개발과정이 (시간이나 비용면에서) 만만치 않으리라는 예상을 쉽게 할 수 있습니다. (시뮬레이션 프로그램을 사용하거나 전문적인 ICE 장비를 사용하는 방법도 있습니다. 그러나 시뮬레이션방법은 제약이 많으며 전문 ICE 장비는 고가(高價)이며 학습기간도 많이 필요합니다. -_-)

    이와같이 마이컴의 프로그램을 작성하고 시험하는 방법을 배우는 것은 큰 도전입니다. 학습에 필요한 노력과 시간, 자금도 많이 필요합니다. (대학생인 경우 1 종류 마이컴 습득에 6 개월정도) 그러나 일단 배워서 사용할 수 있게되면 자부심으로 목에 힘 주고 활보할 수 있습니다. ^^ 우리의 응용 프로젝트 개발에서도 마이컴은 당연히 많이 사용될 것입니다. (마이컴을 사용하면 사용하지 않을 때보다 훨씬 간단하고 신뢰할 수 있는 회로를 만들 수 있습니다) 그러나 마이컴의 사용방법도 지금까지 우리가 공부해온 "회로도 보고 제작하기"의 범위를 벗어나지 않습니다. ^^

    ※ 오픈 프로젝트나 다른 공동작업을 할 때는, 이미 마이컴에 기록되어 있는 프로그램을 수정할 필요가 생깁니다. (기능이 추가되거나 변경, 개선될 때) 이런 경우를 대비하여 마이컴의 롬(ROM)안에 미리 부트로더(bootloder) 프로그램을 기입해 놓으면 새로운 프로그램을 PC의 COM 포트(RS232C)에 연결하여 (마이컴으로) 다운로드할 수 있습니다. ^^

    ※ 부트로더(bootloder) 프로그램의 사용은 원칩 마이컴 롬(ROM)에 플레시롬을 사용한 경우에 한정됩니다. 우리의 응용 프로젝트에는 마이크로칩사의 원칩 마이컴 16F87x 시리즈를 사용하므로 부트로더를 사용할 수 있는 환경입니다. ^^

    ▶ 왕초보 전자회로 강의를 종료합니다. 수고하셨습니다. ^^

    From http://www.devicemart.co.kr/mart7/circuitry/bbs.php?table=beginner&query=view&uid=25&p=1

Posted by suvisor